Labor Market Research Network Conference 9 December 2011

Bahçeşehir University, İstanbul

Agricultural Transformation and Labor Mobility

During the ARIP Period in Turkey:

Evidence from Micro-data, 2000-2002

İnsan TUNALI

Koç University Department of Economics

Joint work with Hüseyin İkizler, Bilkent University

*This presentation draws freely from MA Thesis by İkizler (2011).

AGRICULTURAL TRANSFORMATION AND LABOR MOBILITY DURING THE ARIP PERIOD IN TURKEY: EVIDENCE FROM MICRO-DATA, 2000-2002

by

Hüseyin İkizler

A Thesis Submitted to the
Graduate School of Social Sciences & Humanities
in Partial Fulfillment of the Requirements for
the Degree of
Master of Arts

in

Economics

Koç University

September 22, 2011

We study a period during which ARIP (Agricultural Reform Implementation Project) was in effect.

Figure 1: Employment by Sectors

Detailed study of the Labor Market consequences of ARIP: İlkkaracan and Tunalı, "Agricultural Transformation and the Rural Labor Market in Turkey." Ch.7 in *Rethinking Structural Reform in Turkish Agriculture: Beyond the World Bank's Strategy*, edited by Barış Karapınar, Fikret Adaman, and Gökhan Özertan. Hampshire: NOVA, 2010.

Putting things in perspective:

There was a major crisis in 2001. Ag Employment actually rose in 2001, and then declined until the next crisis in 2008.

Table 1: Share of different sectors in total employment

	2000		20	001	2002		
Employment							
Agriculture	7,458	(34,9%)	8,089	$(37,\!6\%)$	7,769	$^{(36,0\%)}$	
Manufacturing	3,954	(18,5%)	3,774	(17,5%)	3,810	(17,7%)	
Construction	9,58	(4,5%)	1,110	$_{(5,2\%)}$	1,364	(6,3%)	
Services	8,984	(42,1%)	8,551	(39,7%)	8,638	(40,0%)	
Total	21.354	(100%)	21.524	(100%)	21.580	(100%)	

Source: HLFS database, TURKSTAT (2011)

The aim of our paper:

Study intersectoral flows at a time when the agricultural transformation was enhanced.

Key finding: There is substantial mobility between Agricultural and Nonagricultural employment.

We rescale our estimates so that we can quantify the mobility.

Reference working age population: 27.1 million.

Reference Agricultural employment: 8.1 million (30%).

Rate of mobility:

Each year:

230,000 individuals move from AG to NAG;

160,000 individuals move from NAG to AG.

What we do:

We use the short panel component of HLFS 2000-2.

Problem: There is attrition and substitution.

Attrition:

An individual who is present at round t is missing at round t+1.

Substitution:

An individual who is missing at round t returns at round t+1.

We use the RAN model to correct for attrition and substitution.

Tunalı, Ekinci and Yavuzoğlu, "Rescaled Additively Nonignorable Model of Attrition: A Convenient Semi-Parametric Bias-Correction Framework for Data with a Short Panel Component." Revised, September 2011, 15 pp.

Consequences of attrition and substitution:

Consider a two-round panel and let

 y_{ij} = labor market state of individual i at round j, j = 1,2;

 x_i = fixed characteristics of individual i;

 $D_i = 1$ if individual is present at both rounds, 0 else.

Object of interest:

 $f(y_1, y_2 \mid x)$, the joint distribution of labor market states, conditional on x.

We observe: $f(y_1, y_2 | x, D = 1)$.

In general: $f(y_1, y_2 \mid x, D = 1) \neq f(y_1, y_2 \mid x)$.

It can be shown that:

(key equation) $f(y_1, y_2|x) = w(y_1, y_2|x) f(y_1, y_2|D = 1, x)$.

We express the reflation factors $w(y_1, y_2 | x)$ as a function of y_1, y_2 .

Identifying information comes from marginals published by TURKSTAT:

(12)
$$\sum_{y_2} f(y_1, y_2 \mid x) = \sum_{y_2} w(y_1, y_2 \mid x) f(y_1, y_2 \mid D = 1, CP = 3, x) = f_1(y_1 \mid x)$$

(13)
$$\sum_{y_1} f(y_1, y_2 \mid x) = \sum_{y_1} w(y_1, y_2 \mid x) f(y_1, y_2 \mid D = 1, CP = 3, x) = f_2(y_2 \mid x)$$

We specify $w(y_1, y_2|x)$ additively so that we end up with a just-identifed model.

We use MATLAB to solve the equation system.

We rely on bootstrap methods for inference.

$$w(y_1, y_2 | x) = 1$$
 "no bias"

 $w(y_1, y_2|x) > 1$ "downward bias" or "under-represented" in BP

 $w(y_1, y_2|x) < 1$ "upward bias" or "over-represented" in BP

Example: Let y_i denote Labor Market State in period j, w/ values

$$y = 0$$
 (non-participant), $y = 1$ (employed), $y = 2$ (unemployed).

We inroduce 4 indicators:

$$z_{1j} = \begin{cases} 1 & \text{employed in period } j (y_j = 1) \\ 0 & \text{else } (y_j \neq 1) \end{cases}$$

$$z_{2j} = \begin{cases} 1 & \text{unemployed in period } j (y_j = 2) \\ 0 & \text{else } (y_j \neq 2) \end{cases}$$

We treat non-participation in both periods as the reference category, and introduce the linear reflation function:

$$w(z_{1j}, z_{2j}) = \vartheta_0 + \vartheta_1 z_{11} + \vartheta_2 z_{21} + \vartheta_3 z_{21} + \vartheta_4 z_{22}.$$

The reflation function captures the propensity to remain in the balanced panel as a function of the labor market states occupied in periods 1 and 2.

Tabular representation of the 3x3 problem:

DATA:

 $P_{y_1,y_2} = f(y_1, y_2 | D=1, CP=3)$, fractions in the balanced panel. $f_1(y_1)$ and $f_2(y_2)$, "unbiased" marginals (published by TURKSAT).

	$y_2 = 0$	y ₂ = 1	y ₂ = 2	
$y_1 = 0$	∂ ₀ P ₀₀	$(\vartheta_0 + \vartheta_3) P_{01}$	$(\vartheta_0 + \vartheta_4) P_{02}$	$f_1(0)$
$y_1 = 1$	$(\vartheta_0 + \vartheta_1) P_{10}$	$(\vartheta_0 + \vartheta_1 + \vartheta_3) P_{11}$	$\left(\vartheta_0 + \vartheta_1 + \vartheta_4\right) P_{12}$	$f_1(1)$
<i>y</i> ₁ = 2	$(\vartheta_0 + \vartheta_2) P_{20}$	$(\vartheta_0 + \vartheta_2 + \vartheta_3) P_{21}$	$\left(\vartheta_0 + \vartheta_2 + \vartheta_4\right) P_{22}$	$f_1(2)$
	$f_2(0)$	$f_2(1)$	$f_2(2)$	

Objective : Choose $\Theta = \{\vartheta_0, \vartheta_1, \vartheta_2, \vartheta_3, \vartheta_4\}$ so that row & column restrictions are met.

In the current paper, we consider 4 labor market states:

- O. Non-participation (NP)
- 1. Agricultural employment (AG)
- 2. Non-agricultural employment (NAG)
- 3. Unemployement (UNEMP)

In this case we have 7 equations in 7 unknowns.

We repeat the analysis with different x:

All (age 15+)

Males, females

Urban males, rural males

Urban females, rural females

Analysis of Reflation Factors -- All

		- • • • -		•		Perio	od t+1	
	Table R1	. All (Ag	e 15+)	(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate	>10%	Severe	0	6	0	2
	(INP)	by	≤10%	Mild	0	1	1	4
	0	Deflate	≤10%	Mild	0	1	4	1
		by	>10%	Severe	8	0	3	1
(AG)	Inflate	>10%	Severe	7	8	8	8	
	(AG)	by	≤10%	Mild	1	0	0	0
ب	1	Deflate	≤10%	Mild	0	0	0	0
po		by	>10%	Severe	0	0	0	0
Period	(NIAC)	Inflate	>10%	Severe	0	6	0	3
	(NAG)	by	≤10%	Mild	0	1	0	4
	2	Deflate	≤10%	Mild	3	1	8	0
		by	>10%	Severe	5	0	0	1
	/LINIENAD\	Inflate	>10%	Severe	1	7	5	7
	(UNEMP)	by	≤10%	Mild	6	1	3	1
	3	Deflate	≤10%	Mild	1	0	0	0
		by	>10%	Severe	0	0	0	0

Analysis of Reflation Factors -- Males

				•		Perio	od t+1	
	Table R2.	Male (A	ge 15	+)	(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate	>10%	Severe	0	6	0	2
	(INP)	by	≤10%	Mild	0	0	0	4
	0	Deflate	≤10%	Mild	7	1	4	0
		by	>10%	Severe	1	1	4	2
(AG)	Inflate	>10%	Severe	7	8	7	8	
	(AG)	by	≤10%	Mild	1	0	1	0
+	1	Deflate	≤10%	Mild	0	0	0	0
		by	>10%	Severe	0	0	0	0
Period	(NAC)	Inflate	>10%	Severe	0	5	0	3
	(NAG)	by	≤10%	Mild	0	1	0	3
	2	Deflate	≤10%	Mild	4	1	4	0
		by	>10%	Severe	4	1	4	2
	/LINENAD\	Inflate	>10%	Severe	5	7	6	8
	(UNEMP)	by	≤10%	Mild	3	0	2	0
	3	Deflate	≤10%	Mild	0	0	0	0
		by	>10%	Severe	0	1	0	0

Analysis of Reflation Factors -- Females

						Perio	od t+1	
	Table R3. F	emale (Age 1	5+)	(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate	>10%	Severe	0	8	0	1
	(INP)	by	≤10%	Mild	0	0	2	5
	0	Deflate	≤10%	Mild	3	0	3	2
		by	>10%	Severe	5	0	3	0
	(AG)	Inflate	>10%	Severe	6	8	6	8
		by	≤10%	Mild	1	0	1	0
4	1	Deflate	≤10%	Mild	0	0	0	0
po		by	>10%	Severe	1	0	1	0
Period	(NAC)	Inflate	>10%	Severe	1	8	0	3
	(NAG)	by	≤10%	Mild	2	0	6	3
	2	Deflate	≤10%	Mild	0	0	0	1
		by	>10%	Severe	5	0	2	1
	/LINENAD\	Inflate	>10%	Severe	2	8	4	6
	(UNEMP)	by	≤10%	Mild	3	0	2	0
	3	Deflate	≤10%	Mild	0	0	1	0
		by	>10%	Severe	3	0	1	2

Analysis of Reflation Factors – Urban Males

						Perio	od t+1	
Та	ible R4. Urb	an Male	e (Age	15+)	(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate	>10%	Severe	0	0	0	3
	(INP)	by	≤10%	Mild	0	0	0	4
	0	Deflate	≤10%	Mild	3	5	2	0
		by	>10%	Severe	5	3	6	1
(AG)	Inflate	>10%	Severe	2	0	2	5	
	(AG)	by	≤10%	Mild	0	0	0	1
4	1	Deflate	≤10%	Mild	3	5	4	1
		by	>10%	Severe	3	3	2	1
Period	(NAC)	Inflate	>10%	Severe	0	0	0	6
	(NAG)	by	≤10%	Mild	4	4	8	2
	2	Deflate	≤10%	Mild	0	2	0	0
		by	>10%	Severe	4	2	0	0
	/LINENAD\	Inflate	>10%	Severe	7	5	8	8
	(UNEMP)	by	≤10%	Mild	1	2	0	0
	3	Deflate	≤10%	Mild	0	0	0	0
		by	>10%	Severe	0	1	0	0

Analysis of Reflation Factors – Rural Males

						Perio	od t+1	
Ta	able R5. Ru	ral Male	e (Age	15+)	(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate	>10%	Severe	0	1	4	5
	(INF)	by	≤10%	Mild	0	2	2	1
	0	Deflate	≤10%	Mild	4	2	2	0
		by	>10%	Severe	4	3	0	2
	(AG)	Inflate	>10%	Severe	3	4	5	6
		by	≤10%	Mild	1	3	0	2
٠	1	Deflate	≤10%	Mild	1	0	2	0
po		by	>10%	Severe	3	1	1	0
Period	(NAG)	Inflate	>10%	Severe	2	2	1	2
	(NAG)	by	≤10%	Mild	1	1	1	6
	2	Deflate	≤10%	Mild	5	5	4	0
		by	>10%	Severe	0	0	2	0
	(LINENAD)	Inflate	>10%	Severe	6	6	7	8
	(UNEMP)	by	≤10%	Mild	1	1	1	0
	3	Deflate	≤10%	Mild	1	1	0	0
		by	>10%	Severe	0	0	0	0

Analysis of Reflation Factors – Urban Females

				•		Perio	od t+1	
Tab	le R6. Urba	in Femal	le (Ag	e 15+)	(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate	>10%	Severe	0	1	2	6
	(INP)	by	≤10%	Mild	0	1	3	0
	0	Deflate	≤10%	Mild	0	3	1	1
		by	>10%	Severe	8	3	2	1
	(AC)	Inflate	>10%	Severe	1	0	3	4
	(AG)	by	≤10%	Mild	1	4	1	2
4	1	Deflate	≤10%	Mild	4	4	3	1
po		by	>10%	Severe	2	0	1	1
Period t	(NIAC)	Inflate	>10%	Severe	5	5	8	7
<u> </u>	(NAG)	by	≤10%	Mild	3	2	0	0
	2	Deflate	≤10%	Mild	0	0	0	1
		by	>10%	Severe	0	1	0	0
	(LINENAD)	Inflate	>10%	Severe	5	5	6	7
	(UNEMP)	by	≤10%	Mild	3	2	1	1
	3	Deflate	≤10%	Mild	0	0	0	0
		by	>10%	Severe	0	1	1	0

Analysis of Reflation Factors – Rural Females

				- .		Peri	od t+1	
	Table R7. Ru	ıral Female	e (Age :	15+)	(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate by	>10%	Severe	0	5	0	1
			≤10%	Mild	0	1	5	4
	0	Deflate by	≤10%	Mild	2	0	2	2
			>10%	Severe	6	2	1	1
	(AG) Inflate by		>10%	Severe	0	4	3	2
			≤10%	Mild	3	3	1	1
+	1	Deflate by	≤10%	Mild	2	0	2	4
			>10%	Severe	3	1	2	1
Period	(NAG)	Inflate by	>10%	Severe	2	4	1	3
			≤10%	Mild	0	1	3	1
	2	Deflate by	≤10%	Mild	3	0	1	3
			>10%	Severe	3	3	3	1
	(UNEMP)	JNEMP) Inflate by		Severe	6	6	7	6
			≤10%	Mild	1	1	0	0
	3	Deflate by	≤10%	Mild	1	1	0	2
			>10%	Severe	0	0	1	0

Dominant bias patterns in the Balance Panel (6-8 cells have same sign)

From	Into	A	.II	١	Λ	ı	=	Ur	-M	Ru	-M	Ur	~-F	Rι	ı-F
NP	NP		+		+		+		+		+		+		+
	AG	-		-		-			+				+	-	
	NAG		+		+		+		+	-					
	UNE	-				-		-		-		-			
AG	NP	-		-		-			+				+		
	AG	-		-		-			+	-				-	
	NAG	-		-		-			+						
	UNE	-		-		-		-		-		-			
NAG	NP		+		+							-			+
	AG	-		-		-						-			
	NAG		+		+	-		-			+	-			
	UNE	-		-		-		-		-		-			
UNE	NP	-		-		-		-		-		-		-	
	AG	1		ı		ı		ı		-		ı		1	
	NAG	1		1		1		1		-		-		1	
	UNE	-		-		-		ı		-		-		ı	

Summary of dominant bias patterns in the BP:

ALL/M/F: Transitions into/out of UNEMP are under-represented; ... AG are under-represented.

ALL/M/F: Transitions from AG to NAG are under-represented; ... from NAG to AG are under-represented.

ALL/M/F: Transitions from NP to NP, NAG are over-represented; ... from NAG to NP, NAG are over-represented.

Variations emerge when broken down by location as well as sex.

One pattern is extremely consistent:

Transitions into/out of UNEMP are under-represented.

Annual Forward Transitions, All (15+)

Share	From\Into	NP	AG	NAG	UNEMP	Row sum
0.5	NP	84	6	7	3	100
0.17	AG	21	73	5	2	101
0.29	NAG	13	2	79	6	100
0.04	UNEMP	30	5	37	28	100

Inflate to a fictional population of size 2,710

Expand by	From\Into	NP	AG	NAG	UNEMP	Row sum
13.6	NP	1142	82	95	41	1360
4.6	AG	97	336	23	9	460
7.9	NAG	103	16	624	47	790
1	UNEMP	30	5	37	28	100

Total = 2,710

Inflate to a reference population of size 27.1 million

(2000-02 average was 24.6 million)

(x 10,000)

Expand by	From\Into	NP	AG	NAG	UNEMP	Row sum
10000	NP	1142	82	95	41	1360
10000	AG	97	336	23	9	460
10000	NAG	103	16	624	47	790
10000	UNEMP	30	5	37	28	100

Each year:

230,000 individuals moved from AG to NAG;

160,000 individuals moved from NAG to AG.

Note:

Ag employment was around 7.5-8.1 million between 2000-2.

Ag employment for our reference population would be around 8.3-9 million.

Gender differences are considerable!

Annual forward transitions

Male (Age 15+)		Period t+1				
Mean of TUIK marginals			(NP) 0	(AG) 1	(NAG) 2	(UNEMP) 3
.1876217	(AG) 1	14	75	8	3	
.4903384	(NAG) 2	9	2	82	7	
.0558192	(UNEMP) 3	21	6	44	29	

Annual forward transitions

Female (Age 15+)			Period t+1				
			(NP)	(AG)	(NAG)	(UNEMP)	
Mean of TUIK marginals			0	1	2	3	
Period t	.7333045	(NP) 0	89	6	3	2	
	.1539729	(AG) 1	27	71	1	1	
	.0943301	(NAG) 2	24	2	70	4	
	.0183925	(UNEMP) 3	44	3	22	31	